Химическое потребление кислорода это

Содержание:

Присутствующие в воде органические соединения могут претерпевать не только аэробное биохимическое окисление в результате жизнедеятельности бактерий, используемое при определении БПК (см. раздел 6.2.5). При наличии в пробе воды сильных окислителей и соответствующих условий протекают химические реакции окисления органических веществ, причем характеристикой процесса химического окисления, а также мерой содержания в пробе органических веществ является потребление в реакции кислорода, химически связанного в окислителях. Показатель, характеризующий суммарное содержание в воде органических веществ по количеству израсходованного на окисление химически связанного кислорода, называется химическим потреблением кислорода (ХПК). Являясь интегральным (суммарным) показателем, ХПК в настоящее время считается одним из наиболее информативных показателей антропогенного загрязнения вод. Этот показатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в миллиграммах потребленного кислорода на 1 л воды (мгО/л).

Однако не все органические вещества в равной степени участвуют в реакции химического окисления. Так же, как и при биохимическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК.

Теоретическим значением ХПК (ХПКтеор) называют количество кислорода (или окислителя в пересчете на кислород) в мг/л, необходимое для полного окисления содержащихся в пробе органических веществ, т.е. всех способных окисляться элементов из состава органического соединения. При таком окислении углерод теоретически количественно окисляется до CO2, а сера и фосфор (если они присутствуют в соединении) – до SO3 и P2O5. Азот превращается в аммонийную соль; кислород, входивший в состав окисляемых органических молекул, является «строительным материалом» для образующихся продуктов окисления, а водород переходит в структуру H2O или аммонийной соли.

Например, при окислении синильной кислоты и гликоколя протекают реакции:

Химическое потребление кислорода это

Практически используемые методы определения ХПК дают результаты, близкие к ХПКтеор, но всегда отклоняющиеся в ту или иную сторону. При наличии трудно окисляющихся органических веществ их окисление за время реакции проходит неполностью, и это приводит к занижению результата. В то же время, при наличии в пробе неорганических восстановителей, также потребляющих кислород на собственное окисление, результат получается завышенный. Совместное действие обоих факторов и вызывает отклонение реального ХПК от ХПКтеор.

Таким образом, окисляемость, или ХПК, характеризует общее количество содержащихся в воде восстановителей (органических и неорганических), реагирующих с сильными окислителями. В качестве таких окислителей обычно используют бихромат- и перманганат-анионы, и соответственно называются основные методы определения ХПК – бихроматный и перманганатный. Следует отметить, что результаты определения окисляемости одной и той же воды с помощью разных окислителей обычно неоднозначны из-за неодинаковой степени окисления веществ, присутствующих в воде. Результаты зависят также от свойств окислителя, его концентрации, температуры, рН, продолжительности окисления и др. Получаемые результаты сопоставимы только в том случае, когда точно соблюдены все условия проведения анализа.

Бихроматная окисляемость позволяет получить значение ХПК, наиболее приближенное к ХПКтеор, т.е. наиболее полное окисление достигается бихроматом калия. Поэтому определение бихроматной окисляемости является основным методом определения ХПК. Именно бихроматную окисляемость часто называют «химическим потреблением кислорода»*. В условиях этого метода большинство органических соединений окисляется на 95% и более, однако окисляются не все соединения (толуол, бензол, пиридин, парафин и др. практически не окисляются). Катализатором окисления является сульфат серебра, который добавляется в аналитическую рецептуру для ускорения реакции и повышения полноты окисления органических веществ. Избыток бихромата оттитровывается раствором соли Мора. Реакцию проводят в жестких условиях – в 50%-ной (18-нормальной, разбавление 1:1) серной кислоте при кипячении. Содержание неорганических восстановителей в пробе определяют отдельно специальными методами и вычитают из ХПК пробы.

Бихромат при этом восстанавливается согласно уравнению:

Химическое потребление кислорода это

В таких условиях получаемый результат обычно составляет 95–98% от ХПКтеор.

На примере окисления фталата калия бихроматом реакцию можно записать следующим образом:

Химическое потребление кислорода это

Из уравнения реакции следует, что на окисление 2 молекул фталата калия расходуется 16 молекул кислорода, связанного в бихромате. В весовом отношении ХПКтеор для 1 мг фталата калия составляет 1,175 мгО.

Значения ХПКтеор (в мг кислорода на 1 мг вещества) для разных соединений по данным [12] приведены в табл. 14.

Значения ХПКтеор для разных соединений

СоединениеХПКтеор , мгО/л
Щавелевая кислота0,18
Синильная кислота0,59
Гликоколь0,64
Глюкоза1,07
Уксусная кислота1,07
Сахароза1,12
Масляная кислота1,82
Этанол2,09
Додецилбензоат натрия2,34
Фенол2,38
Бутанол2,59

Бихроматная окисляемость определяется методом титрования. Соответствующие методики, с незначительными различиями, регламентированы как отечественными руководящими документами, так и международным стандартом ИСО 6060. Согласно методу титрования, избыток бихромата калия после операции окисления (уравнение реакции см. выше) оттитровывают солью Мора в присутствии индикатора, в качестве которого обычно используется ферроин – комплекс 1,10-фенатролина с сульфатом железа (II) (в качестве индикатора может быть также использована N-фенилантраниловая кислота). При этом катион Fe 2+ в титранте реагирует с катионом хрома:

Химическое потребление кислорода это

Индикатор образует интенсивно окрашенное соединение с Fe 2+ , и бесцветное – с Fe 3+ . По этой причине, когда восстановление Cr 6+ до Cr 3+ завершено, Fe 2+ реагирует с индикатором с образованием ферроинового комплекса. При этом окраска раствора отчетливо изменяется от синевато-зеленой до красно-коричневой, что указывает момент окончания титрования. Момент окончания титрования может быть установлен также потенциометрически.

Читайте также:  Пеналы для кухни напольные

Для определения ХПК, наряду с окислением бихроматом, проводят также окисление перманганатом. Соответствующий показатель называется перманганатной окисляемостью (за рубежом также используют термин «перманганатный индекс»). Перманганатная окисляемость является мерой загрязнения воды окисляемыми органическими и неорганическими веществами, способными к окислению в условиях анализа, и такими условиями являются окисление 0,01 ммоль/л экв. раствором перманганата калия в сернокислой среде или кипячение в течении 10 мин.

Уравнение реакции при окислении пробы перманганатом можно записать следующим образом:

Химическое потребление кислорода это

Для определения перманганатной окисляемости используется более простой метод, чем для бихроматной окисляемости, однако он имеет ограниченное применение. Так, определение перманганатной окисляемости может быть рекомендовано (и широко используется) лишь при анализе природных вод для контроля за динамикой содержания легкоокисляющихся веществ природного происхождения (например, гуминовых кислот). И это понятно, т.к. «жестко» окисляющиеся органические загрязнители, часто присутствующие в сточных водах, в природной воде практически не встречаются. Следует отметить также, что именно перманганатная окисляемость является единственным показателем ХПК, регламентирующим качество питьевой воды согласно СанПиН 2.1.4.559-96 (норматив составляет 5,0 мгО/л).

Перманганатная окисляемость может давать некорректные результаты при анализе сточных вод по следующим причинам:

перманганат – недостаточно сильный окислитель, поэтому окисление многих веществ проходит неполно или совсем не проходит;

при кипячении растворов, содержащих перманганат, последний разлагается до диоксида марганца и кислорода (как в кислой, так и в щелочной средах). Выпадающий диоксид марганца каталитически ускоряет процесс, однако в холостой пробе или относительно чистой воде этого не происходит. Процесс осложняется тем, что количество выпадающего диоксида марганца зависит от условий и состава анализируемой пробы.

Как уже отмечалось, в природных водах содержание трудно окисляющихся органических веществ обычно крайне мало, и результаты, получаемые при анализе природных вод бихроматным и перманганатным методами, практически достаточно близки.

Перманганатную окисляемость используют для оценки качества питьевой, водопроводной воды, природной воды источников водоснабжения и др. Ее определение предусмотрено ГОСТом 2761 при обследовании источников хозяйственно-питьевого водоснабжения. Более загрязненные поверхностные и сточные воды** также, с известным приближением, можно анализировать этим методом, однако их необходимо разбавлять. Перманганатную окисляемость нельзя рассматривать как меру теоретического потребления кислорода или общего содержания органических веществ в воде, т.к. ряд органических соединений в условиях этого метода окисляются лишь частично.

Таким образом, для характеристики ХПК как показателя химической активности пробы, традиционно используются методы «мокрой» химии. Тем не менее ХПК определяют также и «сухими» приборными методами. Например, методами сжигания органических веществ пробы в токе кислорода или СО2. Эти методы также позволяют получить результаты, близкие ХПКтеор, однако требуют приборного оснащения, а приборы – соответствующего обслуживания, поверки и т.п.

Мешающее влияние при определении ХПК оказывают, в первую очередь, хлорид-анионы, как правило, содержащиеся в природных и, особенно, в сточных водах. Хлориды окисляются в условиях анализа до элементарного хлора, поэтому при содержании в пробе в концентрации свыше 300 мг/л их влияние устраняется (или минимизируется) путем добавления сульфата ртути (II) в количестве 22,2 мг HgSO4 на 1 мг Cl – . Образующийся малодиссоциированный хлорид ртути (II) устойчив в присутствии большой концентрации серной кислоты и бихромата.

Определению также мешают нитриты, часто присутствующие в водах, прошедших биохимическую очистку. Для их устранения в пробу вводят по 10 мг сульфаминовой кислоты на 3 мг NO 2– . При кипячении раствора нитрит-анионы удаляются в виде азота, а избыток сульфаминовой кислоты переходит в сульфат аммония:

Химическое потребление кислорода это

Помимо хлоридов и нитритов, определению мешают сульфиды, сероводород и железо (2). Все указанные соединения, при их присутствии в пробе, могут быть определены индивидуально, и результат анализа на окисляемость в таком случае уменьшают на величину потребления кислорода этими соединениями. В частности, 1 мг H2S соответствует 0,47 мгО, 1 мг NO 2– – 0,35 мгО, 1 мг Fe 2+ – 0,14 мгО.

Нормативы на ХПК в воде водоемов: для питьевой воды – 5,0 мгО/л (для перманганатной окисляемости), ХПН – 15 мгО/л; КБН – 30 мгО/л (для бихроматной окисляемости).

* Показатель ХПК по международной терминологии (англ.) называется «Сhemical oxyden demand» (COD). При этом имеется в виду исключительно бихроматная окисляемость.

** Для оценки загрязненности сточных вод органическими веществами используют обычно бихроматную окисляемость.

Стоки, сбрасываемые в канализацию населённых пунктов, предприятий подлежат обеззараживанию, очистке, также происходит их самоочистка. Процедуры нужны для недопущения нанесения вреда экологии. До и после обработки нечистоты имеют различную степень органического насыщения, определяющуюся параметром ХПК сточных вод.

Что такое ХПК и БПК?

Параметры, характеризующие состояние стоков, основаны на расходе кислорода (гидролиз, окисление). В лабораториях измеряют биохимическое потребление кислорода (БПК) и химическое потребление кислорода (ХПК).

БПК оценивает объём кислорода, израсходованный аэробами на окись, разложение частиц органического происхождения. Значение вычисляют, замеряя количество О2, использованного без доступа света за конкретное время (пять — двадцать суток).

Показатель ХПК, определяющий объём органики в воде, выражается миллиграммами окислителя на литр жидкости.

Какие факторы влияют на ХПК?

Состав стоков меняется под влиянием независимых причин:

  • биохимические процессы;
  • наличие в составе атмосферных осадков;
  • происхождение, характер сточной воды (бытовые промышленные, хозяйственные, поверхностные, подземные);
  • сезонные явления.

От указанных влияний зависит состав стоков, способность их к соединению с кислородом, поскольку некоторые химические вещества, попадающие в воду, не вступают в реакцию с окислителем. Выбор реактивов для определения ХПК обусловлен составом жидкости.

Чем отличаются ХПК и БПК?

Несмотря на то что с помощью БПК и ХПК оценивают загрязнение воды, эти показатели отличаются. Как было указано выше, принцип действия лежит в окислении органических соединений. БПК представляет собой биохимический процесс, а ХПК — химический.

Уровень загрязнения биохимически определяется с помощью микроорганизмов в специальной среде (без света) и инкубационном периоде (до двадцати суток). При химическом процессе, чистоту определяют, используя окислители. Срок выполнения анализа сточных вод не превышает четырнадцать дней.

Химическое потребление кислорода показывает общий объём органических веществ в стоках, тогда как БПК даёт оценку загрязнения конкретного объёма воды.

Методики определения ХПК

ХПК сточных вод – это индекс уровня их загрязнения. Для заключения применяют такие способы:

Первый способ предпочтителен для загрязнённой воды. При выполнении используют бихромат калия, серную кислоту. Для реакции бихромного окисления применяют катализатор — сульфат серебра, ускоряющий процесс, но не оставляющий следов пребывания в исследуемом образце. Удаление хлоридов проводят с применением сульфата ртути.

Реакция перманганатного окисления происходит с участием перманганата калия и серной кислоты.

Читайте также:  Как приготовить сладкий перец в духовке

Что такое БПК полное и БПК 5?

Как было указано выше, БПК анализируется от пяти до двадцати суток. Период, за который был проведён анализ обозначают как БПК5 или полное.

Индекс 5 возле аббревиатуры обозначает, что анаэробное воздействие на органические соединения длилось пять суток. По истечении этого времени измеряются полученные показатели количества использованного кислорода в литре сточной воды.

Период для получения полного анализа равен двадцати суткам. Это максимальный срок для процесса окисления микроорганизмами. За это время потребляется весь задействованный в реакции окислитель. Полный период потребления обусловлен характером органических соединений в образце сточной воды.

Методики определения БПК

Для анализа жидкости посредством биохимического потребления применяют скляночный способ. Лаборанты подсчитывают объём кислорода в образцах до инкубационного периода и после него. Материалы содержат при температуре двадцать градусов без света на протяжении времени, нужного для соединения находящихся в сточной воде органических соединений с кислородом.

Три склянки наполняют одинаковым количеством исследуемого материала. Пробы с кислотностью 6-8 pH нагревают (охлаждают) до температуры 20 градусов, насыщают окислителем, взбалтывая на протяжении минуты. Содержимое одной ёмкости проверяют на количество О2, а пробы двух других оставляют в термостате на срок от пяти суток. По завершении инкубационного периода измеряют содержание окислителя обеих ёмкостей. Среднее количество кислорода образцов пересчитывается на литр.

В БПК методике результат рассчитывают исходя из разницы показателей первой пробы, среднего количества двух других.

Норма показателя ХПК

Промышленные предприятия, коммунальные службы выполняют регулярную очистку сточных вод, после которой, нечистоты должны соответствовать нормативам, закреплённым законодательно (табл.1).

Таблица 1: норма использования кислорода

Параметр (мг/дм³)Характеристика воды
0-2Чистая
3-4Средне чистая
4-15Средне загрязнённая
больше 15Загрязнённые

Соотношение БПК и ХПК

Суть рассмотрения указанных параметров отличается принципом проходящих реакций. Различны пограничные значения биохимического, химического потребления О2.

Соотношение ХПК и БПК в сточной воде обусловлено характером, составом сточной жидкости. Разница между обозначенными параметрами увеличивается, если полнота биохимического окисления недостаточна. Такое соотношение свидетельствует о низком уровне пригодности нечистот для очистки биологическими методами.

Оценка разницы указанных коэффициентов способствует разработке, подбору действенных способов очистки сточной воды.

Чем опасны высокие уровни ХПК и БПК?

Нечистоты разного происхождения имеют различный состав и характеристики. Большой объём органических соединений, требует много реактива для окисления. Высокие показатели ХПК и БПК говорят о чрезмерном насыщении воды органикой.

Загрязнённая, недостаточно очищенная жидкость несёт вред окружающей среде по двум причинам:

  1. Попадание вредных веществ в водоёмы. Существует риск отравления животных, их гибели. Накопление органических соединений в почве чревато попаданием заражённых растений в пищу.
  2. Кислорода, используемого бактериями для окисления органики в естественной среде (вне лаборатории), не хватает для жизни живым организмам водоёма (рыбы, растения).

ХПК и БПК – критерий загрязнения

Как было указано выше, химическое потребление О2 и его биохимическое потребление — основные индексы уровня органических соединений в стоках.

ХПК представляет собой индекс суммарного насыщения нечистот органикой. Поскольку с его помощью оценивают уровень органических частиц, находящихся во всём объёме сточной жидкости.

Биохимическое потребление определяет количество окисляемых аэробами частиц в литре. Органикой насыщены все сточные воды, но её масса должна соответствовать тому, что окисляется естественным путём.

Стадии снижения ХПК и БПК в процессе очистки

Если параметры загрязнения воды превышают допустимые нормы, предприятия, сбрасывающие нечистоты, проводят их обработку. Для этого вводят в эксплуатацию очистные сооружения. Станции по обработке стоков бывают разного типа, принципа действия, размера.

Процесс очистки воды проходит три стадии по снижению коэффициентов потребления кислорода. Уменьшение значений происходит на всех этапах, но обусловлено характеристиками и происхождением. После каждой стадии, выполняют контрольный забор проб, используя прибор для измерения.

Различия между бытовыми и промышленными сточными водами

Местом образования сточной жидкости объясняется её состав, уровень загрязнения. Бытовые стоки содержат органические соединения, моющие средства, мусор. Уровень потребления кислорода таких нечистот находится на низком и среднем уровне. Это обусловлено тем, что органика быстро полностью окисляется.

Промышленные сточные воды содержат компоненты иного характера, а состав стоков зависит от отрасли, в которой они образовались:

  • жиры;
  • соли металлов;
  • нефтепродукты;
  • взвешенные вещества;
  • фосфаты.

Показатели загрязнения такой воды высокие, поскольку кислорода (заменителя) для реакции требуется значительное количество.

Стадии очистки сточных вод и снижения показателей их загрязнённости

Сточные жидкости проходят через очистительные сооружения. Независимо от типа очистителя, чтобы достигнуть норматив БПК и ХПК сточных вод, обработка жидкости происходит в четыре этапа:

  1. Фильтрация, отстаивание жировых плёнок и крупного мусора.
  2. Проводится окисление, растворение органических веществ и примесей специальными препаратами с целью обеззараживания.
  3. Химическими, физико-химическими методами (абсорбция, электродиализ, обратный осмос) удаляются соли металлов, мелкие примеси.
  4. Выведение, обезвоживание шлама. Способ не снижает параметры загрязнения, но улучшает качество воды.

Если после обработки уровень загрязнения не снизился до параметров нормы, надо изменить технологию очистки или модернизировать оборудование.

Химическое потребление кислорода – информативный показатель степени загрязнения сточной воды. Несоответствие нечистот нормативам несёт серьёзный урон окружающей среде.

Химическое потребление кислорода это

Для эффективной работы очистных систем требуются сведения о загрязненности стоков. Лаборатории исследуют химическое потребление кислорода (ХПК) сточных вод для выбора методов очистки и определения ее скорости, чтобы добиться требуемых показателей.

Химическое потребление кислорода это

Загрязнение природных вод.

Что такое ХПК и БПК

Стоки окисляются кислородом из атмосферы. При расчетах учитывают другие задействованные вещества. Их переводят в объем кислорода. О2 требуется в количестве, достаточном для того, чтобы содержащиеся в жидких нечистотах опасные вещества превратились в безвредные. Тем самым вода очищается .

Для характеристики состояния стоков используют показатели химического потребления кислорода (ХПК) и биологического (БПК). ХПК определяет количество органики в 1 мг кислорода на 1 л. БПК указывает, сколько кислорода потребили бактерии, разлагая органические частицы за определенное время.

В стоках много органики, для переработки которой требуется кислород, независимо от происходящих процессов очистки. Его потребление возрастает с увеличением процента органических примесей.

Какие факторы влияют на ХПК

Состав жидких отходов зависит от ряда обстоятельств:

  • происходящие биологические процессы;
  • содержание воды из атмосферы;
  • характер стоков (бытовые или промышленные);
  • климатические изменения.

В стоках содержатся вещества, способные к окислению в разной степени. Некоторых с кислородом не реагируют. Чтобы подобрать реактивы для анализа, исследуют состав жидкости.

Чем отличаются ХПК и БПК

ХПК и БПК сточных вод указывают загрязненность, но это разные показатели. Очистка возможна при окислении органики. БПК – это биохимические реакции, ХПК – химические.

Читайте также:  Как открыть кран печки на ваз 2105

При биологическом исследовании используют микроорганизмы. Для них создают особую среду, полную темноту и выдерживают в таких условиях от 5 до 20 суток. При химическом анализе чистоту определяют с применением окислителей. Анализ проводят 2 недели, не более.

ХПК показывает общее содержание органики в жидких отходах, а БПК оценивает загрязненность ограниченного объема.

Методики определения ХПК

Для исследований пользуются 2 методами: перманганатным и бихромным. Для первого нужны перманганат калия и серная кислота. Результат называют перманганатной окисляемостью.

Химическое потребление кислорода это

Диаграмма ХПК сточных вод.

Бихромный анализ проводят при необходимой температуре:

  1. В жидкость вводят серную кислоту, бихромат калия.
  2. Присутствует катализатор – сульфат серебра. Это вещество не попадает в жидкость, получившуюся после реакции.
  3. Хлориды нейтрализуют добавлением сульфата ртути.

Результаты анализов можно рассчитать теоретически. При некоторых условиях данные, полученные практическим путем, отличаются от теоретических. Это происходит, если присутствует много неорганических элементов, влияющих на окисление.

Требуются отдельные расчеты потребления кислорода. Результат отнимается от суммарного показателя. Исследования занимают 2-3 суток.

Что такое БПК полное и БПК 5

Количество окислителя, вступившего в реакцию, вычисляют в течение стандартных единиц времени: 2, 5 и 20 суток. Иногда применяют другой период, что диктуется наличием предполагаемых загрязнителей и тем, сколько длится полное окисление.

Лабораторный мониторинг проводят при строго выдержанных условиях: в темноте, при температуре не ниже +20° С. При нарушениях окисление проходит по-другому, что влияет на данные. БПК рассчитывают как разницу содержания кислорода до начала окисления и после.

Индекс после букв обозначает временной промежуток в сутках, в течение которого проводился анализ. БПК5 указывает на то, что исследование длилось 5 суток. Этого хватает, чтобы в стоках со средней загрязненностью кислород вступил в реакцию с 70% органических примесей.

Полное БПК – это результат, когда 100% кислорода окисляется. Процесс длится преимущественно 20 суток в нормальных условиях. Характер органики влияет на продолжительность полного окисления.

Методики определения БПК

В 3 колбы заливают одинаковое количество сточной жидкости. Температуру доводят до +20° С, нагревая или охлаждая воду. Взбалтывают 1 минуту, чтобы насытить исследуемый материал кислородом.

В одной емкости проверяют концентрацию кислорода. Другие 2 колбы на время помещают в термостат для исследования. Когда время истекает, измеряют содержание окислителя, переводят в литры. Результат определяют как разницу между данными, полученными из первой емкости и среднего значения в 2 других.

Химическое потребление кислорода это

Определение органический загрязнений.

Норма показателя ХПК

Содержание загрязняющих веществ после очистки регулируется законодательно утвержденными нормативами.

Величина ХПК в различной воде

Загрязненность

ХПК (мг/л)

Чистая1-2Умеренная загрязненность3Загрязненная4Грязная5-15

Допустимые параметры зависят от сферы применения воды. Завышенные свидетельствуют о нехватке кислорода, увеличенном содержании органики.

Соотношение БПК и ХПК

ХПК и БПК измеряют одновременно, чтобы получить сведения о стоках. Данные сравнивают, соотносят. Если ХПК выше БПК, это значит, что вода содержит много органики, которая не окисляется.

Отличающиеся результаты объясняются происходящими реакциями. Потребление кислорода разное, зависит от типа процессов: химические или биологические. На соотношение влияют характер жидкости и ее содержимое. Увеличение разницы происходит при недостаточном биохимическом окислении. Это значит, что жидкие нечистоты малопригодные для биологической очистки.

На основании оценок результатов мониторинга подбирают эффективные способы очистки.

Чем опасны высокие уровни ХПК и БПК

Химическое потребление кислорода это

Плохо очищенная вода.

Плохо очищенная вода наносит урон природе:

  1. Если вредные вещества попадают в открытые источники, это грозит гибелью животным, пьющим из них воду.
  2. Накапливаясь в почве, вредные вещества усваиваются растениями. Зараженные овощи, фрукты попадают на стол людям.
  3. В водоемах при высоком содержании органических загрязнений возрастает потребность в кислороде. Он расходуется на окисление, а флора и фауной испытывают дефицит.

ХПК и БПК: критерий загрязнения

Химическое и биологическое потребление кислорода – основные показатели наличия органики. Химический анализ оценивает суммарное количество нечистот, которые находятся во всем объеме стоков. Биохимические исследования учитывают переработанные аэробными бактериями частицы в литре жидкости. Органика содержится во всех стоках, но ее количество не должно превышать уровень, который окисляется естественным способом.

Стадии снижения ХПК и БПК в процессе очистки

Предприятия, в случае превышения норм загрязнения сбрасываемой воды, обязаны обрабатывать ее. Строятся очистные сооружения, различающиеся производительностью, по типам и принципам действия.

Снижение ХПК и БПК проходит в 4 последовательных стадии, в результате каждой затраты кислорода уменьшаются. На изменение показателей влияют характеристика и происхождение стоков. После каждого этапа забирают пробы для контроля.

Показатели загрязненности снижаются в большей степени на первой стадии после отстаивания. Удаляются вещества, которые разлагаются только сильными окислителями. После этого остается больше примесей, которые окисляются биологически. Поэтому перед биологической очисткой снижают их концентрацию. Чаще предприятия строят станции, где применяется только механическая и химическая очистка.

Стоки не всегда подвергают всем стадиям очистки. Необходимые нормы иногда достигаются после первого этапа.

Различия между бытовыми и промышленными сточными водами

Содержимое стоков зависит от их происхождения. В домашних жидких нечистотах много органики, мусора, химических бытовых средств. Они быстро окисляются, кислорода требуется немного.

Состав производственных стоков обусловлен отраслью промышленности. Они содержат такие загрязнители, как продукты нефтепереработки, соли различных металлов, фосфаты и др. Подобные вещества трудно окисляются. Требуется больше кислорода, которым иногда принудительно насыщают стоки.

Когда сточные воды различного происхождения объединяются, это на пользу биологической очистке. Бытовые стоки содержат много органики, которая поддерживает активность процессов.

Стадии очистки сточных вод и снижения показателей их загрязненности

Для достижения норм стоки очищают. Процесс не зависит от вида установленных очистителей и проходит 4 стадии:

  1. Первичная очистка. Стоки избавляют от жировых пленок, тяжелых частиц, а также самых многочисленных примесей, легко поддающихся удалению.
  2. На втором этапе от жидкости отделяют взвешенные частицы и примеси, в т.ч. те, доля которых уже растворилась. Очистка происходит биологическим окислением, потому что большинство веществ – органические.
  3. Третья стадия основана на применении различных физико-химических методов. Удаляются самые мелкие частицы и примеси, в т.ч. соли металлов.
  4. Заключительный этап – удаление воды из шлама, чтобы максимально снизить его объем и вес. На качестве показателей ХПК и БПК стадия не отражается.

Если очистка не приносит необходимых результатов, требуется изменить очистную технологию или обновить оборудование.