Холостой ход трансформатора это

Определение режима. Холостым ходом трансформатора называется такой режим его работы, при котором к первичной обмотке подведено синусоидальное напряжение u1, а вторичная обмотка разомкнута и ток в ней равен нулю. Принципиальная схема однофазного трансформатора при холостом ходе изображена на рис.7.6. В этом режиме трансформатор подобен дросселю с замкнутым ферромагнитным магнитопроводом.

Необходимость изучения данного режима заключается в том, что одновременно с определением основных параметров трансформатора (коэффициента трансформации, тока холостого хода, потерь в стали магнитопровода) возможно в сочетании с параметрами, полученными при другом крайнем режиме — коротком замыкании, охарактеризовать работу трансформатора под нагрузкой и наиболее точно определить коэффициент полезного действия.

Холостой ход трансформатора это

Рисунок 7.6 — Схема трансформатора при холостом ходе

Принцип действия в режиме холостого хода. Под действием приложенного напряжения u1 в первичной обмотке трансформатора имеет место небольшой ток холостого хода i10 = i, обычно не превышающий (3-10%) от номинального тока в первичной обмотке, т.е. его действующее значение I£(0,03…0,1)I. Этот ток создает МДС первичной обмотки i×w1, которая обусловливает в замкнутом магнитопроводе переменный основной магнитный поток трансформатора Ф и небольшой переменный поток рассеяния первичной обмотки ФS1, замыкающийся вокруг первичной обмотки по воздуху.

Основной поток Ф наводит в первичной обмотке трансформатора ЭДС самоиндукции e1, а во вторичной обмотке — ЭДС взаимоиндукции e2. Поток рассеяния создает в первичной обмотке ЭДС eS1, называемую электродвижущей силой рассеяния. Так как основной поток Ф замыкается по магнитопроводу, а поток рассеяния ФS1 в основном по воздуху, то основной поток будет во много раз больше потока рассеяния (Ф>>ФS1), следовательно, и ЭДС, наводимые этими потоками в первичной обмотке, будут тоже существенно различаться по величине (E1>>ES1).

При синусоидальном напряжении u1 ЭДС e1 и e2 тоже синусоидальны, а следовательно, и поток Ф, создающий их, синусоидален. Однако вследствии магнитного насыщения магнитный поток трансформатора непропорционален намагничивающему току. Поэтому при синусоидальном потоке Ф намагничивающий ток i является несинусоидальным. При исследовании процессов в трансформаторе действительную кривую намагничивающего тока заменяют либо эквивалентной синусоидой с тем же, что и у действительной кривой, действующим значением, либо его первой гармоникой.

Действующие значения индуктированных ЭДС в обмотках трансформатора при холостом ходе определяются по формулам, известным из электротехники:

где w1 и w2 — числа витков первичной и вторичной обмоток;

f — частота ЭДС и тока, Гц;

Разделив E1 на E2, получим коэффициент трансформации трансформатора:

Холостой ход трансформатора это(7.7)

В двухобмоточных трансформаторах согласно ГОСТ 16110-80 при определении коэффициента трансформации берется отношение высшего напряжения к низшему и поэтому значение "n" всегда больше единицы.

Коэффициент трансформации n, как уже отмечено, приближенно определяется из опыта холостого хода трансформатора по отношению напряжений на зажимах обмоток

Контур намагничивания. Трансформатор фактически представляет собой две электрические цепи (первичная и вторичная обмотки), связанные магнитным полем, что усложняет расчет самого трансформатора и анализ его работы. По этой причине в теории и инженерной практике исходную схему трансформатора (рис. 7.6) заменяют схемой электрической цепи без взаимоиндукции (рис. 7.7).

В такой эквивалентной схеме электрической цепи математическое описание процессов чаще всего ведут с использованием алгебраических уравнений, записываемых для комплексных действующих напряжений и токов.

Холостой ход трансформатора это

Рисунок 7.7 — Эквивалентная электрическая схема замещения трансформатора в режиме холостого хода.

Действие противо-ЭДС E 1 можно представить в виде падения напряжения от тока I10 = I на некотором полном сопротивлении Z m:

где Холостой ход трансформатора это— параметр, характеризующий магнитную цепь трансформатора и называемый полным сопротивлением контура намагничивания;

rm— активное сопротивление контура намагничивания, определяемое потерями в стали трансформатора;

хm — индуктивное сопротивление контура намагничивания, определяемое потокосцеплением основного потока с первичной и вторичной обмотками при токе в первичной обмотке, равном I (при отсутствии тока во вторичной обмотке).

Таким образом, сопротивление Zm обусловлено потерями в стали магнитопровода и намагничивающей МДС холостого хода (I×w1) первичной обмотки трансформатора.

Поток рассеяния ФS1 замыкается в основном по воздуху и, следовательно, практически не создает никаких потерь в стали. Значит, ЭДС рассеяния ES1 можно заменить падением напряжения только на индуктивном сопротивлении первичной обмотки x1, обусловленном потокосцеплением рассеяния YS1 первичной обмотки с её витками при соответствующем токе в обмотке

Холостой ход трансформатора это(7.9)

Величину x1 называют индуктивным сопротивлением рассеяния первичной обмотки.

Замена ЭДС рассеяния ES1 падением напряжения US1 от тока I на сопротивлении x1 делает более наглядной роль потока рассеяния: он создает индуктивное падение напряжения в первичной обмотке трансформатора, не участвуя в передаче энергии из одной обмотки в другую.

Уравнения равновесия напряжений. Эти уравнения удобно записать для комплексной схемы замещения трансформатора, работающего в режиме холостого хода (рис. 7.8)

Холостой ход трансформатора это

Рисунок 7.8 — Комплексная схема замещения трансформатора в режиме холостого хода

При синусоидальном напряжении U 1 и эквивалентном синусоидальном токе I уравнения равновесия напряжений для первичной и вторичной цепей трансформатора при холостом ходе записываются в следующем виде:

Читайте также:  Формула секундного расхода воды

Холостой ход трансформатора это(7.10)

где Холостой ход трансформатора это— полное комплексное сопротивление первичной обмотки трансформатора;

r1 – активное сопротивление первичной обмотки (обычно r На основании вышеизложенного можно сделать ряд выводов .

1. Режим холостого хода характеризуется тем, что по отношению к сети трансформатор представляет комплексную нагрузку почти индуктивного характера, при которой приложенное напряжение U 1 опережает ток холостого хода I на угол, близкий к 90 0 . Работа трансформатора в этом режиме вследствие значительной потребляемой из сети реактивной мощности является нежелательной.

2. Так как величины падений напряжений Ir1 и IхS1 составляют лишь несколько процентов от приложенного напряжения, то векторы E 1 и E 2 сдвинуты по отношению к вектору U 1 на угол, близкий к 180 0 . При этом величины векторов U 1 и E 1 отличаются незначительно. Поэтому практически коэффициент трансформации можно с достаточной степенью точности определить из отношения напряжений обмоток трансформатора при холостом ходе, т.е.

Холостой ход трансформатора это(7.11)

Опыт холостого хода. Режим холостого хода трансформатора обычно исследуют опытным путем с использованием двух вольтметров, амперметра и ваттметра. При этом к первичной обмотке трансформатора (рис. 7.7) подводится номинальное напряжение U10 = U. На зажимы вторичной обмотки включается вольтметр с большим внутренним сопротивлением, позволяющий измерять напряжение U20»Е2.

В опыте холостого хода определяются:

а) ток холостого хода I (по показанию амперметра, включенного в первичную цепь). При U10 = U ток I не должен превышать (3-10%) I;

б) потери в стали магнитопровода трансформатора Pст (по показаниям ваттметра) P = I 2 r1 + Pст » Pст, так как потерями в меди первичной обмотки ввиду малости тока I и сопротивления r1 можно пренебречь ;

в) коэффициент трансформации n (по показаниям вольтметров в первичной и вторичной цепях)

Холостой ход трансформатора это

г) коэффициент мощности cosj (по показаниям вольтметра, амперметра и ваттметра в первичной цепи)

Холостой ход трансформатора это;

д) параметры схемы замещения трансформатора при холостом ходе:

Холостой ход трансформатора это

Холостой ход трансформатора это

Холостой ход трансформатора это

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8925 — Холостой ход трансформатора это | 7233 — Холостой ход трансформатора это или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Трансформаторы являются устройствами, предназначенными для повышения и понижения переменного напряжения. При этом частота тока не меняется, также, как и практически не изменяются его мощностные характеристики. Каким бы ни был трансформатор (по разным критериям их можно разделить на несколько групп), он имеет ряд сходных характеристик, на которые следует обращать особое внимание, не только во время эксплуатации, но и во время проверки работоспособности устройства.

Трансформаторы и режимы их работы

Работа всех трансформаторных устройств, а их около десятка различных видов, способны соответствует одному из трех основных режимов:

  • Холостому ходу.
  • Короткому замыканию.
  • Нагрузочному режиму.

Один из наиболее важных режимов — холостой ход трансформатора, ведь именно на основании информативных показателей опытов холостого хода проводится доскональный анализ любого их режимов. Для этого также требуются параметры схемы замещения.

Как определить коэффициент трансформации и другие параметры? ↑

Что такое «холостой ход трансформатора»? По сути, это особый режим работы устройства, условием которого является разомкнутость вторичной обмотки, а первичная обмотка имеет номинальное напряжение. В таком состоянии, при проведении ряда расчетов, можно определить точные параметры целого ряда показателей, например, для трансформаторных устройств распространенного однофазного типа так рассчитываются:

  • коэффициент трансформации;
  • активное, полное, индуктивное сопротивление ветви намагничивания;
  • коэффициент мощности, процентное значение тока и измерения холостого хода.

Алгоритм проведения измерений холостого хода выглядит так:

  • Измеряется ток, который был приложен к первичной обмотке, посредством измерительных приборов, которые включены в общую цепь.
  • Замыкается вторичная обмотка на вольтметре. Сопротивление должно быть такой величины, чтобы значение тока вторичной обмотки приближалось к минимальной отметке.
  • Величина тока холостого хода в первичной обмотке минимальна относительно значения номинала, если сравнивать с прикладываемым напряжением, которое приводит в равновесие электродвижущая сила первичной обмотки. И оба этих показателя отличаются незначительно, а значит значение хода электродвижущей силы в первичной обмотке можно определить по данным вольтметра.

Наиболее точные искомые значения можно получить, используя обмотки различного напряжения — низкого и высокого. Точность таких измерений будет определяться разницей номиналов между ними.

Причины и следствия потерь холостого хода трансформатора ↑

Потери холостого хода трансформаторных устройств любого типа — это следствие износа устройств. Со временем их магнитная система и структура используемого металла стареет и меняется, межлистовая изоляция становится хуже, а прессовка сердечника ослабляется. Естественно, вы это негативно сказывается на уровне потерь электроэнергии.
Практика показывает, что вопреки установленных нормам, согласно которым потери могут отличаться от заводских показателей не более, чем на пять процентов, во многих случаях они превышают порог в пятьдесят процентов. Особенно это касается трансформаторов силового типа. Данные измерений такого типа устройств позволяют довольно точно прогнозировать потери энергии в каждом отдельном муниципалитете.

Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!

Читайте также:  Плагин для aliexpress динамика цен

Если хотите заказать обслуживание трансформаторных подстанций или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .

Как измерить потери холостого хода трансформатора? ↑

Основные принципы измерений потерь холостого хода всех видов трансформаторных приборов прописаны в ГОСТах.
Главной причиной ошибочных результатов, полученных во время проведения измерений, можно назвать низкую точность измерительных устройств и неверные действия замерщиков, а также несоответствие необходимым условий проведения измерений.
Чтобы избежать отклонений, влияющих на прогнозы и корректировку условий и интенсивности эксплуатации приборов, стоит предварительно разработать, согласовать с изготовителем и утвердить методику измерения потерь в данном режиме.

Плавность регулировки сварочного трансформатора ↑

Эффективность действия устройства напрямую зависит от такого явления, как электромагнитная индукция. Что такое режим холостого хода сварочного трансформатора? Напомним, что такой режим устанавливается при разомкнутой вторичной обмотке в тот момент, когда подключается первичная обмотка с током I1. Напряжение сети переменного тока в данном случае равно U1.

Ток, идущий по первичной обмотке, моделирует магнитный поток с переменными характеристиками, индуцирующий переменное напряжение U2, возникающее во вторичной обмотке. А так как ее цепь находится в разомкнутом состоянии, соответственно ток I2 имеет нулевое значение. То есть во вторичной цепи нет никаких затрат электроэнергии. В этих условиях вторичное напряжение, которое возникает в комментируемом режиме, достигает пиковых значений. Такая величина является напряжением холостого хода.

Принцип действия таких устройств базируется на преобразовании стандартного сетевого напряжения. Этот стандарт преобразуется в напряжение холостого хода, имеющее приблизительный диапазон от 60 до 80 В.

Все параметры и их соотношение влияют на уровень и плавность регулировки. Делать это можно двумя путями: меняя значение либо индуктивного сопротивления, либо напряжения холостого хода.

В первом случае, который является более частотным и популярным, регулировка сварочного тока происходит более плавно. Вторым предпочитают пользоваться, как альтернативным.
Плавность двухдиапазонного регулирования мощности тока в процессе работы трансформатора сварочного типа играет важную роль, так как дает возможность значительно снизить показатели массы, а также ощутимо уменьшить размеры устройства. Получить широкий диапазон больших токов можно, включая попарно параллельно катушки как первичной, так и вторичной обмоток, а чтобы получить диапазон токов малой мощности, их необходимо включать в последовательном режиме.

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Холостой ход трансформатора это

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Читайте также:  Настенные тепловентиляторы автоматическим поддержанием температуры

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Холостой ход трансформатора это

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Холостой ход трансформатора это

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.