Температура конденсации фреона r410a

  • Раскачка "пустых" спецконтрейнеров с остатками хладонов "под ноль" — экономия до 10% хладона.
  • Рекуперация однокомпонентных фреонов, изобутана при ремонте оборудования.
  • Закачка фреонов под высоким давлением без поддавливания инертными газами.
  • Оборудование для утилизации вышедших из обращения фреонов, галонов, пожаротушащих хладонов.
  • Переход с фреонов на углекислоту CO2.

мы поможем Вам решить, где поставить запятую

Распространенные названия вещества: фреон 410A, хладон 410A, R-410A

Хладагент R-410A — зеотропная смесь R-32 (50%) и R-125 (50%).

Применяется для замены R -22 в новых системах кондиционирования и теплонасосных установках (в бытовых и жилых помещениях): + для получения низких температур + необходимость реконструкции систем из-за высокого уровня давления + большая эффективность в режиме отопления Долгосрочный хладагент (ГФУ). Применяют в кондиционировании воздуха. Замена R-12B1. Требует оборудования с конкретным классом давления.

Негорючий газ. При прикосновении с пламенем и горячими поверхностями разлагается с образованием высокотоксичных продуктов.

При подборе оборудования Haskel для подачи фреонов наибольшее внимание следует уделить фазовому состоянию вещества на входе в насос/компрессор. Ниже приведен график зависимости давления конденсации от температуры хладагента:

Зависимость давления конденсации от температуры фреона R-410A

Температура конденсации фреона r410a

  • I — Гарантированно жидкая фаза. Область применения жидкостных насосов с пневматическим приводом Haskel.
    Haskel liquid pumps area
  • II — Газовая фаза. Область применения дожимных компрессоров с пневматическим приводом Haske.l
    Haskel gas boosters area
  • III — Газовая фаза при давлениях 1,25 — 5 бар изб. Область применения насос-компрессоров для хладонов с пневматическим приводом Haskel.
    Haskel pumps for refrigerants area
  • IV — Газовая фаза при давлениях ниже 1,25 бар изб. Применение оборудования Haskel неэффективно либо невозможно.
    Haskel equipment not applicable
  • V — Граничная область — ограничена снизу кривой фазового перехода (изб. давление), сверху линией, лежащей выше кривой фазового перехода на 2 бар (верхнее ограничение — условное).
    Boundary area

Области применения показаны для условий на всасывании. При подборе оборудования безусловно необходимо учитывать требуемое давление нагнетания хладагента, требуемый расход. Разграничение по областям применения весьма условно.

Общий видОписаниеОбласти применения Температура конденсации фреона r410aЖидкостные насосы с пневматическим приводомПожача жидкой фазы.
Перекачка значительных объемов фреонов (до 50 л/мин).
Подача фреонов под давлением в процесс для питания экструдеров (до 2000 бар).
Заправка пожаротушащими фреонами, галонами, углекислотой огнетушителей, систем пожаротушения.
Заправка фреонами баллонов, спецконтейнеров.
Минимальная температура перекачиваемой жидкости -70С.
Сотни моделей, тысячи модификаций для подачи хладонов, пожаротушащих фреонов, галонов, углекислоты CO2, изобутана, сжиженных углеводородов.Температура конденсации фреона r410aНасосные установки для подачи жидкой фазы фреоновИзготавливаются в переносном и стационарном исполнениях.
Могут комплектоваться системой автоматического управления, хотя в большинстве случаев сложная автоматика не требуется.
Установки с ручным управлением с высокой точностью выполняют задачи поддержания постоянного давления фреона на нагнетании, заправки баллонов фреонами до требуемого (предустановленного) давления.
До десятка стандартных решений, бесконечное множество решений под заказ. Температура конденсации фреона r410aКомпрессоры и насос-компрессоры для подачи жидкой и газовой фазы фреоновМогут перекачивать как 100% жидкую, так и 100% газовую фазу.
Производительность по газу снижается относительно производительности по жидкости в 100 и более раз.
Основные области применения:
Раскачка остатков фреона (минимальное экономически целесообразное давление раскачки 1,25 бар изб.)
Сжижение фреонов давлением.
Подача смесей газов.
Нескольо специальных моделей в различных исполнениях для подачи практически любых современных и применяемых ранее сжиженных газов.
Десятки моделей, сотни модификаций для решения подачи различных сред, в том числе компримированных и сжиженных газов для решения различных задач.Температура конденсации фреона r410aУстановки для подачи фреонов в жидкой и газовой фазеРазличные решения начиная от компактных установок с ручным управлением, заканчивая сложными автоматизированными системами.
Установки раскачки фреонов, установки сжижения газов давлением, установки подачи хладонов, изобутана, сжиженных углеводородов, установки подготовки смесей газов.
До десятка стандартных решений, бесконечное множество решений под заказ.

Область I — подача жидкого фреона.

Область I условно лежит на 2 бара выше линии конденсации фреона. Именно эти условия на всасывании зачастую требуют производители насосов высокого давления.

В этой области могут работать как жидкостные насосы, так и дожимные компрессоры и насос-компрессоры Haskel.

Читайте также:  Pic16f877a datasheet на русском

Наиболее эффективна работа жидкостых насосов, так как фреон в процессе перекачки насосом не претерпевает фазовых переходов а находится строго в жидкой фазе — в противном случае насос качать не будет.

Дожимные компрессоры и насос-компрессоры на цикле всасывания стремятся перевести жидкость в газовую фазу, на цикле нагнетания — переводят обратно в жидкую фазу. В результате компрессоры подают мультифазную среду, что значительно снижает эффективность.

Область II и Область III — подача газообразного фреона.

В этих областях могут работать исключительно дожимные компрессоры и насос-компрессоры.

Дожимные компрессоры следует применять при давлениях на входе не ниже 5 бар — условное ограничение.

Применение насос-компрессоров для хладонов эффективно до давлений 0,25 бар. Поэтому именно это оборудование специалисты завода рекомендуют для раскачки хладонов "под ноль".

Область V — Граничная область.

В 90% случаев приходится работать именно в этой области, так как сжиженный газ, не поддавленный инородным газом, находится в состоянии кипения.

Давление газа соответствует давлению насыщенных паров при данной температуре, кавитационный запас на уровне границы раздела фаз строго равен НУЛЮ.

Располагаемый кавитационный запас системы на входном патрубке насоса определяется высотой столба жидкости относительно входного патрубка минус потери на входном трубопроводе.

В этой области допускается как применение жидкостных насосов так и компрессоров, однако применение жидкостных насосов в этой области связано с преодолением определенных трудностей.

Типичная проблема при эксплуатации ЖИДКОСТНЫХ НАСОСОВ при подаче сжиженных газов — насос не качает, срывает поток.

Проблемы возникают по причине ошибок в проектировании (редкие, но очень болезненные случаи), из-за ошибок при обвязке насоса по месту, эксплуатации насоса.

Основная причина проблем — частичный или полный переход перекачиваемой среды в газовую фазу в области входного штуцера и/или рабочей камеры жидкостного насоса, кавитационный срыв потока.

Производительность жидкостного насоса слишком мала и насос не способен прокачать газовую пробку. Зачастую сброс газа и предварительное заполнение не приводит к стабильной работе насоса — через несколько циклов насос снова срывает и перестает качать.

Применять жидкостные насосы в этой области надо крайне осторожно, по возможности рекомедуется применять дожимные компрессоры или насос-компрессоры.

Достаточно часто на практике мы встречаемся с применением жидкостных насосов в этой области, так как это наиболее экономически эффективное решение (иногда единственное возможное при применении оборудования Haskel).
Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз.

Если Вам приходится эксплуатировать жидкостные насосы в этой области рекомендуем учесть следующие рекомендации:

  • Предусмотрите линию сброса газа на нагнетании насоса — это позволит Вам предварительно заполнить насос жидкой фазой перед пуском насоса
  • Обеспечьте максимальный кавитационный запас системы NPSHa — превышение давление на входе в насос над давлением насыщенных паров, для этого:
  • По возможности уберите местные сопротивления на входной магистрали: запорные, регулирующие клапаны, фильтры, сужения потока, резкие повороты потока.
  • При выборе места установки насоса нужно помнить, что труба — не только источник дополнительного сопротивления, но и источник подвода теплоты. Устанавливайте насос как можно ближе к питающему резервуару, обеспечьте теплоизоляцию всасывающего трубопровода.
  • Устанавливайте насос как можно ниже уровня резервуара, в идеале — на нижних этажах, в подвале и проч. Каждый метр заглубления насоса ниже уровня жидкости в резервуаре значительно снижает риск разрыва потока на входе.
  • По возможности обеспечьте постоянный расход через насос, при низкой скорости потока и особенно при остановке насоса жидкость успевает нагреваться за счет теплообмена с окружающей средой что приводит к срыву потока.
  • Обеспечьте наилучшие кавитационные характеристики насоса:
  • Применяйте по возможности двухплунжерную конструкцию, исплонения для отключения пневматического привода на цикле всасывания.
  • По возможности ограничивайте скорость насоса, особенно на цикле всасывания.

Если все вышеперечисленное не помогло:

  • Обеспечьте местное охлаждение входного трубопровода непосредственно перед входным штуцером насоса.
  • Поставьте один или несколько дожимных компрессоров или насос-компрессоров перед насосом. Установки с компрессором первой ступени и насосом второй ступени обычно сводят риск срыва потока к нулю.

Производительность ЛЮБОГО насоса/компрессора при 100% жидкой фазе на входе будет выше производительности того же насоса/компрессора при 100% газовой фазе на входе в 100 и более раз.

Как это правило работает на практике:
Имеем полностью заполненный спецконтейнер на входе с двумя выходами: нижний и верхний забор.
Если подключимся к верхнему забору — понятно, что производительности от насоса не получим.
Подключаемся к нижнему забору, чтобы раскачать хладон побыстрее, включаем насос "на полную".
Результат — насос не качает.
Причина:
Разрыв потока и частичный переход в газовую фазу происходит еще на запорном кране спецконтейнера, Ду которого как правило не более 6. Далее смесь жидкости и газа преодолевает прочие сопротивления по трубе и попадает в рабочую камеру, где при высоких скоростях поршня окончательно переходит в газовую фазу.
Насосу остается только сжать газовую фазу до давления сжижения.
Применяем правило "3 по 100": Снижаем скорость поршня насоса в неколько раз — в результате подача увеличивается в десятки, а то и сотни раз.

Читайте также:  Чем заделать трещину в ламинате

© Вся информация на русском языке, размещенная на сайте, является собственностью ООО "Пневмологика". Любое копирование, тиражирование запрещено.

R-410A — фреон, неазеотропная смесь из 50 % дифторметана R-32 ( англ. ) и 50 % пентафторэтана R-125 ( англ. ) , наиболее часто используемый фреон в современных кондиционерах. Ни один из его компонентов не содержит хлора, поэтому он безопасен для озонового слоя (озоноразрушающий потенциал равен нулю). Этот фреон приходит на смену R-22, который разрушает озоновый слой, и производство которого ограничено Монреальским протоколом.

Содержание

Физические свойства [ править | править код ]

СвойствоЗначение [1] [2]
Температура кипения (To)-51,5 °C
Критическая температура (Tc)72 °C
Критическое давление (pc)4.93 МПа (49,7 атм)
Теплота парообразования при температуре кипения, кДж/кг264,3
Коэффициент возможности истощения озонового слоя (ODP)0 (CCl3F = 1)
Потенциал глобального потепления (GWP)1890 (CO2 = 1)

R-410A является смесью, близкой к азеотропной. Основной недостаток неазеотропных смесей — температурное скольжение, то есть изменение температуры кипения в процессе фазового перехода (испарения и конденсации). Однако у хладагента R-410A температурное скольжение настолько мало (0.15 К), что им можно пренебречь, то есть считать смесь азеотропной (для сравнения, температурное скольжение хладагента R-407C составляет 7К [3] ).

Влияние на окружающую среду [ править | править код ]

Так как оба компонента не содержат хлора, R-410A имеет нулевой потенциал истощения озонового слоя Земли. R-410A имеет высокий потенциал глобального потепления, примерно такой же, как и у R-22, но с учётом более высокой эффективности (индекс SEER) установок с использованием R-410A, общее влияние на глобальное потепление ожидается существенно ниже, чем при использовании R-22 — за счёт снижения выбросов тепловых электростанций [4] . R-410A не токсичен (при концентрации менее 400 мг/кг) и не пожароопасен. [5]

Преимущества и недостатки R-410A [ править | править код ]

Хотя и говорят, что фреон R-410A приходит на смену R-22, это не следует понимать буквально: физические и теплотехнические свойства фреонов совершенно различны, поэтому систему, рассчитанную на R-22, нельзя заправлять фреоном R-410A: система должна быть изначально спроектирована под фреон R-410A. Этим он отличается от фреонов R422D и R-407C, которые специально предназначены для замены R-22 в старых системах. Давление в контуре при рабочих температурах существенно выше (так, при температуре 43°С R22 имеет давление насыщенного пара 15,8 атм, а R410A—около 26 атм.), поэтому более высокие требования предъявляются к герметичности, медные трубки конденсатора и испарителя должны быть более прочными, отсюда большая масса меди и более высокая цена. Ещё одним минусом R-410A является несовместимость с минеральным маслом. Если R22 растворяется в любом минеральном масле, то для фреона R410a нужно специальное полиэфирное масло, которое намного дороже, а кроме того, требует более аккуратной заправки (оно очень активно поглощает влагу, теряя свои свойства). [6] С другой стороны, R-410A обладает высокой удельной хладопроизводительностью (в полтора раза выше чем R-407C и R22, в два раза выше чем R-134A, что позволяет использовать компрессор с меньшей объёмной производительностью.

Температура конденсации фреона r410a

Рубрика: Технические науки

Дата публикации: 02.07.2017 2017-07-02

Статья просмотрена: 2959 раз

Библиографическое описание:

Копылова О. А., Романов В. В., Прохорова А. И., Копылов И. С. Обзор термодинамических характеристик хладагентов R-134А, R-410А и R-407C для системы кондиционирования воздуха // Молодой ученый. — 2017. — №26. — С. 31-33. — URL https://moluch.ru/archive/160/45004/ (дата обращения: 03.01.2020).

Проводится сравнительный анализ между хладагентами R-134A, R-410А и R-407C. Сравнение проводится по термодинамическим коэффициентам.

Ключевые слова: хладагент, химический состав, рабочее давление, эффективность работы компрессора, удельная холодопроизводительность, холодильный коэффициент

В последнее время наилучшими озонобезопасными хладагентами считаются R-134A, R-410A и R-407C. Хладагенты R-410A и R-407C пришли на замену фреону R-22, а R-134A на замену R-12. [1] У каждого рассматриваемого хладагента имеются определенные достоинства и недостатки.

Читайте также:  Маленькая однокомнатная квартира дизайн интерьера фото

Основные характеристики этих хладагентов таковы:

1) Изотропность. В хладагентах 134A и R-410A возможна изотропность (дозаправка агрегата в случае утечки), R-407C не имеет возможность дозаправки оборудования (а вот популярный ранее фреон R-22 имел изотропность).

2) Работа на масле. Поршни, работающие в компрессоре необходимо смазывать маслом для уменьшения трения и увеличения срока службы. Для этого в систему вместе с хладагентом добавляют масло. В системе оборудования совершается цикл работы и тем самым смазываются необходимые элементы установки. Все марки хладагента работают на полиэфирных маслах, R-22 работал на минеральном.

3) Давление. В момент, когда температура конденсации достигает 43 градусов, у хладагента R-410A давление в системе составляет 26 атмосфер. Если сравнить, то у R-407C — 18 атмосфер и у R-134A — 10 атмосфер, а у R-22 показатель давления держался на уровне 16 атмосфер.

Химический состав.

Все марки хладагентов очень удобно использовать, т. к. они являются смесями веществ в отличие от традиционных фреонов. Эти хладагенты имеют нулевой потенциал истощения озонового слоя Земли. Также являются нетоксичными и не пожароопасными.

Хладагента R-410A является азеотропной смесью двух фторуглеводородов. Он состоит из 50 % дифторметана R-32 и 50 % пентафторэтана R-125. Такой хладагент считают изотропным, и при его утечке смесь почти не изменяет своих состав, это позволяет дозаправить оборудование. Одним из недостатков таких смесей является температура скольжения. В процессе фазового перехода (испарения или конденсации) температура кипения смеси меняется. За счет температуры скольжения хладагенту R-410А присуще те же достоинства, что R-134А.

К недостаткам хладагента R-410А можно отнести то, что требуется использование только синтетических полиэфирных масел. Они быстро поглощают влагу и вследствие этого теряют свои качества. При этом масла неспособны растворять какие-либо органические соединения или нефтепродукты, которые могут стать загрязнителями.

Хладагент R-407C является, также, азеотропной смесью двух фторуглеводородов.

В состав смеси входят сразу три хладагента — R-134a (его доля составляет 52 %), R-125 (25 %) и R-32 (23 %). Каждая составляющая дает хладагенту часть свойств. Например, высокую производительность дает R-32, отсутствие возгораемости благодаря хладагенту R-125, оптимальный уровень рабочего давления в контуре обеспечивает R-134а.

Температура скольжения по сравнению с R-410А очень мала (0,15К), поэтому им можно пренебречь. Такая смесь хладагентов не является изотропной, в случае, если произошла утечка хладагента, его фракции улетучиваться неравномерно, меняя необходимый состав вещества.

Недостатком хладагента является то, что если холодильный контур разгерметизируется (произойдет утечка), оборудование нельзя будет просто дозаправить — придется сливать остатки хладагента и полностью заправлять новый хладагент. Именно поэтому R-407C сегодня популярен менее, чем должен. Еще одним недостатком марки является то, что она является самым сильным компонентом образования парниковых газов, разрушающих атмосферу.

Рабочее давление.

Абсолютное значение рабочего давления в системе зависит от нагрузки воспринимаемой компрессором. Чем выше давление, тем больше нагрузка на компрессор. С увеличением силы трения в подшипниках, увеличивается износ, что определяет надежность компрессора и всего агрегата. Кроме перечисленного, увеличивается нагрузка при постоянной производительности, приводит к потреблению компрессора большего количества электроэнергии. Разность давления также влияет на эффективность работы компрессора. Чем выше разность, тем выше вероятность протечки хладагента со стороны высоко давления на сторону низкого. [2]

К недостаткам хладагента R-410А относится высокое давление в системе оборудования и разность давления на сторонах всасывания и нагнетания. Если сравнить чиллеры с воздушным и водяным конденсатором, то значения будут сопоставимы. Из таблицы 1 видно, что чиллеры PROXIMUS (на хладагенте R-410А, с водяным конденсатором) и McPower (на хладагенте R-407С, с воздушным конденсатором) имеют примерно одинаковое рабочее давление конденсации.

Хладагент

Модель

Температура на входе вконденсатор

Тконд., °С

Рконд., бар