Удельное сопротивление меди в метрах

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

Удельное сопротивление меди в метрах

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме — описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая.

Удельное сопротивление зависит от концентрации в проводнике свободных электронов и от расстояния между ионами кристаллической решетки, иначе говоря, от материала проводника.

Размерность удельного электросопротивления в сист. СИ (международная система единиц, англ. — International System of Units) –
Ом·м [Ом*м^2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м., то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус. – микроом-метр, англ. – microhm-meter) = 1*10^-6 Ом*м
1 мкОм·м = 1 Ом·мм2/м

При этом, удельное сопротивление однородного куска проводника длиной 1 метр и площадью токоведущего сечения 1 квадратный миллиметр – равно 1 Ом·мм2/м, если его сополтивление равно 1 Ом.
Например, величина удельного сопротивления электротехнической меди, примерно, составляет 1,72*10^-8 Ом·м = 0.0172 мкОм·м (определяется при температуре 20 градусов по Цельсию).

В зависимости от удельного сопротивления все вещества делятся на проводники, диэлектрики и полупроводники. Диэлектрики (изоляторы, например — фарфор) имеют очень высокие значения удельного электрического сопротивления, превышающие 10^12 Ом·м, а проводники (к примеру — серебро, медь) – меньше 10^-2 Ом·м ( Соотношения:

1 Ом·мм2/м = 1 мкОм·м ( 1*10^-6 Ом*м )
1 Ом·см = 0.01 Ом·м
1 Ом·м = 100 Ом·см (ом-сантиметр, англ. Ohm-centimeter)

Электрическая проводимость – это величина, обратная электрическому сопротивлению. В СИ единицей электрической проводимости является Сименс (обозначается — См, анг. — S). Например, медь имеет эл.проводность, приблизительно, равную 58 100 000 См/м ( 1 / 58100000

0,0172 х 10-6 Ом.м), измеряемую при температуре 20 °C

Формула для расчёта электрического сопротивления при постоянном токе

где:
R – электросопротивление провода;
p – удельное сопротивление: p [Ом·мм2/м] = (R * S) / L [ Om * mm^2 / m ]
L – длина, м;
S – поперечное сечение: квадратный метр или миллиметр (м2 или мм2). S = 3.14 * (радиус)^2

Если удельное эл.сопротивление – в Ом·мм2/м, то S (сечение) – должно быть в мм2, L (длина) – в метрах.
Если в Ом·см (Ом-сантиметр, сокращением, из Ом*см^2 / см ), то S в см2, L – в сантиметрах.
Если уд.сопр – в Om·m (Ом-метр, из Ом*м^2 / м ), то S в м2, L – в метрах.

1 Ом·мм2/м = 1 мкОм·м (производная дольная единица удельного электрического сопротивления в системе СИ, применяемая, на практике, в технических расчётах – миллионная часть Ом•м)

Для электрика и опытного радиолюбителя, способность на глазок оценить сечение электрического провода, с учётом слоя изоляции – это как абсолютный слух у музыканта, слёту определяющего высоту тона услышанных звуков и записывающего их в виде нотных знаков и ключей регистра.

Пример, в качестве образца по соотношению величин.

Удельное электросопротивление чистой электротехнической меди, измеренное при температуре 20 °C:

0,0172 мкОм (микроом-метр, 10^-6 Ом•м)

1.72*10^-2 Ом*мм^2/м (фактическое электр-е сопротивление медного проводника, длиной 1 метр и сечением 1 мм2)

1.72*10^-6 Ом•см (размеры провода — в сантиметрах)

1.72*10^-8 Ом•м (сокращением, из Ом*м^2/м – метровый кубик, площадь токоведущего сечения – 1м2 , т.е. между противоположными гранями)

17.2 нОм•м (наноом-метр, 10^-9 Ом•м)

Металлы высокой проводимости (не более 0,1 мкОм.м) – используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления (не менее 0,3 микроом-метр) — применяются для производства образцовых резисторов, реостатов, электроизмерительных приборов, электронагревательных устройств, нитей ламп накаливания и т. п. Нагревательные сплавы должны выдерживать длительную работу на открытом воздухе — без разрушения при температурах не менее 1000 °С.

Таблица значений удельного электрического сопротивления,
мкОм·м (микроом-метр) = Ом·мм2/м (равные числовые величины)

при температуре окружающей среды 20 градусов по Цельсию

Серебро — 0,015-0,016
Медь — 0,0172-0,0180
Золото — 0,024
Алюминий — 0.026-0.030
Вольфрам — 0,053-0,055
Цинк 0,053-0,062
Никель — 0.068-0,073
Латунь (сплав меди с цинком) — 0,043 — 0,108
Железо — 0,098
Сталь — 0,10-0,14
Олово — 0,12
Оловяно-свинцовый припой — 0,14 — 0,16
Бронзовые сплавы — 0,02 — 0,2
Свинец — 0,217 — 0,227
Никелин — 0,4
Манганин — 0,42 — 0,48
Константан — 0,48 — 0,52
Нихром — 1,05-1,40
Фехраль — 1,15-1,35
Угольно-графитовые щётки для электрических машин — 20-50
Угольный сварочный электрод — 50-90 мкОм·м

Читайте также:  Замки гардиан отзывы форум

Минералка (с минерализацией воды — 2-7 грамм на литр) — 1-4 *10^6 мкОм·м = 1-4 Ом•м
Вода грунтовая — 10-50 *10^6
Влажная / сырая садовая земля (верхний слой почвы, грунта — после поливки) — 20-60 *10^6

Почему в электросетях применяется высокое напряжение

В линии электропередачи, при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, считается желательным, увеличение напряжения до величин в десятки (внутригородские воздушные и кабельные сети электропередач на 380 вольт, 6, 10, 20, 35, 110, 220 и 330 кВ) и сотни киловольт (магистральные электросети сверхвысокого — ЛЭП500-750 кВ и ультравысокого напряжения, 1150кВ и выше) на линиях переменного и постоянного (150, 400, 800 кВ) тока. Но, при таких параметрах эксплуатации, постоянно растущем потреблении электрической энергии и частых пиковых перегрузках, износ оборудования, отсутствие резервных мощностей, погодные аномалии, локальные несоответствия требованиям безопасности, непрофессионализм и элементарное разгильдяйство — могут стать причиной нештатных ситуаций и системных аварий (называемых теперь, на английский манер — блэкаут). По этой причине, муниципальные власти любого посёлка и города — имеют постоянную головную боль по обеспечению резервными источниками питания (аккумуляторами и дизель-генераторами) для бесперебойного электроснабжения социальных объектов по резервной схеме.

Спецсплавы на медной основе, в электротехнике

При больших токах, до 10 А – применяют проволочный резистор большой мощности, называемый реостатом. В качестве обмотки используют проволоку, изготовленную из термостабильного (с минимальным температурным коэффициентом) сплава с большим удельным сопротивлением, например, из константана (40% Ni, 1,2% Mn, 58,8% Cu). Если напряжение между соседними витками не превышает 1 вольта — такую проволку можно наматывать плотно, виток к витку, без особой изоляции между витками, благодаря наличию естественной плёнки окисла, образующейся на поверхности данного металла, при быстром (не более трёх секунд) нагреве до достаточно высокой температуры (порядка 900 °С).

В приборах высокого класса точности – применяется манганин (3%Ni, 12%Mn, 85%Cu), менее термоустойчивый, но, в отличие от константанового провода, имеющий очень малую термоЭДС (контактную разность электрических потенциалов) в паре с медью.

Обозначения рекомендуемых кратных и дольных величин от единиц СИ

10^9 Ом — гигаом ГОм GΩ
10^6 Ом — мегаом МОм MΩ
10^3 Ом = 1000 Ом — килоом кОм kΩ.
10^-2 Ом — сантиом сОм cΩ
10^-3 Ом — миллиом мОм mΩ.
10^-6 Ом — микроом мкОм µΩ
10^-9 Ом — наноом нОм nΩ

Зависимость сопротивления от температуры.

При нагревании, электрическое сопротивление металлических проводников – возрастает, а при охлаждении – уменьшается. Для вычисления, по формуле, электросопротивления при определённой температуре – используют, так называемый, "температурный коэффициент сопротивления" (ТКС). Расчёты ведутся от некоторого начального уровня температуры. Для интервала температур, в пределах обычных погодных условий (в зимнее и летнее время года) окружающей среды, зависимость для проводника описывается математической формулой:

R2 = R1 * (1 + α * (t2 – t1)),

где R1 (начальное, известное значение, при нуле или 20 градусов по Цельсию, измеренное или посчитанное) и R2 (искомое) – сопротивления резистора соответственно при температурах t1 (0°С или 20°С) и t2; α – температурный коэффициент сопротивления (из справочной таблицы), равный относительному изменению электр. сопротивления (удельного или абсолютного) при изменении температуры на 1 °С. Так как значения ТКС очень малы, то в справочниках их указывают в единицах тысячных или миллионных долей (ppm/°С — Parts Per Million) относительного изменения сопротивления на градус.

Обычно, исходные, табличные значения различных физических постоянных – приводятся или к нормальной комнатной температуре +20 °С или к нулевой (в справочных таблицах проводниковых и реостатных материалов, применяемых в электрических аппаратах).

В металлических термометрах, изготавливаемых из медной или платиновой проволоки – электросопротивление, с повышением температуры (без экстремально высоких, для этих материалов, значений) увеличивается почти линейно. Но, при чрезмерно сильном нагреве, к примеру, тонкого медного провода до температуры красного каления, его активное электрическое сопротивление постоянному току возрастает многократно.

Пример расчёта для стометрового алюминиевого шинопровода, радиусом 40 мм, нагретого на 95°С:
R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3 , 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

2

0,050,070,10,20,30,40,50,711,522,54611Наибольший допустимый ток, А0,711,32,53,545710141720253054

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,&nbsp K – килоом,&nbsp M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака. Вторая буква означает класс точности, то есть, допускаемое отклонение от указанной величины. Номиналы на мелкие детали – наносят в виде маркировки цветными кольцами, полосками или точками (в зависимости от применяемого стандарта). Каждому цвету соответствует определенная цифра, означающая число Ом, множитель / степень или процент точности. Для быстрого определения номинала резистора по цветовой кодировке, применяются специальные компьютерные программы.
Читать дальше.

Читайте также:  Гоночная машина из бумаги своими руками

Пример расчёта, на основе школьной задачки по физике из программы 9 класса.

Задание: определить (найти в таблице), по известному удельному сопротивлению p = 0.017Ом·мм2/м — какой это материал? Рассчитать диаметр проволоки. Вычислить электрическое сопротивление провода, длиной L = 80 см, сечением S = 0.2 мм2
Решение задачи:
По таблице определяем, что удельное сопротивление, равное 0.017 Ом·мм2/м может быть у меди.

Из формулы S = 3.1416 * (радиус)^2 = 3.142 * ((диаметр)^2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

Мобайлшина 24 шиномонтаж 24 часа. Недорого и быстро.

Электромонтажные работы — монтаж электрики, подключение и обслуживание электропроводки. | Минисправочник по электрическим параметрам: соотношения Ом х мм2/м и мкОм x м (микроом), в технических расчётах.

Направленное движение частиц в любом веществе создает электрический ток за счет образования разности потенциалов. Индивидуальные физические характеристики каждого вещества определяют влияние на прохождение тока и оцениваются как электрическое сопротивление.

Суть явления

Это величина, характерная для проводника, имеющего длину 1 метр и площадь поперечного сечения 1 квадратный метр/миллиметр. Ее обозначают греческой буквой ρ. Разным материалам свойственны разные удельные сопротивления. Вместе с тем сопротивление проводника будет меняться в прямой пропорциональности к длине и в обратной к площади поперечного сечения. То есть чем больше длина проводника, тем оно выше, но чем больше толщина, тем оно ниже.

Удельное сопротивление меди в метрах

Единицы измерения

Практическое значение в технике имеет единица, равная миллионной доле ома, помноженного на метр (Ом-м), так как даже встретить провод с сечением, равным одному квадратному метру и более, довольно проблематично. Поэтому в измерениях обычно применяют микроом-метр (мкОм-м):

1 мкОм-м = 1×10^-6 Ом-м = 1 Ом-мм 2 /м

Формула расчета удельного сопротивления

Расчет производят так:

, где R — сопротивление проводника (Ом); L — длина проводника (м); S — сечение проводника (мм 2 ).

Удельное сопротивление меди в метрах

Таким образом ρ однокомпонентного отрезка провода, длина которого равняется 1 метру, а площадь поперечного сечения — 1 квадратному миллиметру, при R, равном 1 ому, составит 1 Ом-мм 2 /м.

Таблица удельного электрического сопротивления некоторых металлов

Вид проводаρ при 20℃, Ом-м
Серебряный1,59×10⁻⁸
Медный1,67×10⁻⁸
Золотой2,35×10⁻⁸
Алюминиевый2,65×10⁻⁸
Вольфрамовый5,65×10⁻⁸
Никелевый6,84×10⁻⁸
Железный9,7×10⁻⁸
Платиновый1,06×10⁻⁷
Стальной1,6×10⁻⁷
Свинцовый2,06×10⁻⁷
Дюралюминиевый4,0×10⁻⁷
Нихромовый1,05×10⁻⁶

Удельное сопротивление абсолютно независимо от формы и размеров проводника, однако варьируется в широком диапазоне при отклонении температуры от принятого за стандартное значения, равного 20 градусам Цельсия. Практическим электротехническим путем доказано, что увеличение температуры повышает сопротивляемость металлов течению тока, с обратной стороны — вместе со снижением температуры она снижается. Примерно подсчитать, насколько существенным будет изменение, можно с учетом того, что всем металлам присущ почти одинаковый уровень прироста убыли данной величины, в среднем составляющий 0,4% на 1°С.

Удельное сопротивление меди в метрах

Если же данный показатель нужно определить точно, то можно воспользоваться этой формулой:

ρ = ρ0 x (1 + α x (t — t 0 ))

, где ρ и ρ0 — соответственно удельные сопротивления при температурах t и t 0 (20°С, табличное значение), α — температурный коэффициент сопротивления.

Вид проводаα
Никелевый0,005866
Железный0,005671
Молибденовый0,004579
Вольфрамовый0,004403
Алюминиевый0,004308
Медный0,004041
Серебряный0,003819
Платиновый0,003729
Золотой0,003715
Цинковый0,003847
Стальной0,003
Нихромовый0,00017

Так, к примеру, найдя в таблицах удельное сопротивление меди при 20 градусах Цельсия и ее температурный коэффициент, можно вычислить, что при нагреве до 100℃ ее сопротивление вырастет на 32%. Практически то же самое будет происходить с удельным сопротивлением алюминиевого кабеля с тем же коэффициентом (0,004). А вот удельное сопротивление стали повысится менее значительно — на 24%.

Удельное сопротивление меди в метрах

С увеличением температуры проводник насыщается тепловой энергией, передающейся всем атомам вещества. Этим обуславливается повышение интенсивности их теплового движения. Последний фактор и приводит к повышению сопротивляемости движению свободных электронов в определенном направлении, поскольку возрастает вероятность встречи свободных электронов с атомами. Когда температура снижается, меньшее количество атомов может препятствовать направленному движению электронов, следовательно, происходит обратное. В результате колоссального спада температуры возникает интереснейшее явление, называемое «сверхпроводимостью металлов»: сопротивляемость уменьшается до нуля в условиях, близких к абсолютному нулю (-273,15℃). В таких кондициях атомы металла замирают на своих позициях, и электроны движутся без каких-либо препятствий.

Удельное сопротивление меди в метрах

Удельное сопротивление меди различных марок

Круглая медная проволока для проводов, кабелей и так далее бывает мягкой (марка ММ), твердой (марка МТ) и марки МС. Ее выпускают в диапазоне диаметров 0,02-9,42 мм. Удельное электрическое сопротивление проволоки постоянному току при 20℃ соответствует значениям, приведенным в таблице:

Диаметр проволоки, ммρ при 20℃, мкОм-м
МММТ, МС
Меньше 1,000,018
1,0-2,440,017240,0178
2,50 и больше0,0177

Преимущества меди в плане проводимости дают повод обширно применять ее на производстве проводников. Вместе с тем медь — относительно дорогой и дефицитный материал, поэтому ее все чаще заменяют другими металлами, включая алюминий.

Удельное сопротивление меди в метрах

Сплавы меди с оловом, хромом, кадмием и другие называют бронзами. Бронза при правильном подоборе состава очень выгодно отличается от чистой меди по части механических свойств.

Сравнительно небольшое удельное сопротивление меди – важный, но не единственный положительный фактор. Широкое применение этого материала объясняется разумной стоимостью, устойчивостью к неблагоприятным внешним воздействиям. Из него несложно создавать качественные изделия необходимой формы, которые без дополнительной защиты сохраняют функциональность при длительной эксплуатации в сложных условиях.

Читайте также:  Балансировочный клапан на стояках отопления

Удельное сопротивление меди в метрах

Медь – основной материал для проводников

Квалифицированный выбор подходящего материала сопровождается комплексной оценкой нескольких факторов. Медный проводник не повреждается коррозией, потому что на поверхности образуется защитный слой из окислов. Структурная целостность сохраняется при малом радиусе поворота, после многократных изгибов. Отмеченные параметры пригодятся для оснащения помещений с повышенной влажностью и прокладки линий сложной конфигурации.

Тем не менее, главным преимуществом является малое сопротивление проводов из меди. Кроме улучшения токопроводимости с одновременным снижением потерь при передаче энергии, следует отметить уменьшение веса и размеров кабельной продукции, по сравнению с альтернативными вариантами.

Удельное сопротивление чистых металлов при низких температурах

Колебательные процессы в молекулярной решетке препятствуют свободному перемещению электронов. Этим объясняется увеличение сопротивления по мере роста температуры. Линейная зависимость наблюдается от небольшой положительной температуры, вплоть до точки начала плавления. Соответствующий фазовый переход сопровождается резким увеличением электрического сопротивления. Разумеется, подобный режим после разрушения не является рабочим.

Удельное сопротивление меди в метрах

Теоретические показатели «а» подтверждаются результатами эксперимента «б». Если структуру чистого металла исказить примесями (загрязнениями, компонентами сплавов), произойдет беспорядочное распределение носителей электрического заряда. Это, в свою очередь, увеличит потери в цепи (сопротивление).

Таблица сопротивления металлов

Чтобы убедиться в преимуществах меди, надо сделать соответствующий сравнительный анализ. Ниже приведены значения сопротивлений металлов в сводной таблице.

Основные электрические параметры проводников, созданных из разных материалов

МатериалУдельное сопротивление в Омах на метр, замеренное при комнатной температуре (+20°C)Удельная электропроводность при аналогичных условиях, в сименсах на метр
Медь1,68х10^-35,96х10^7
Серебро1,59х10^-36,3х10^7
Золото2,44х10^-34,1х10^7
Алюминий2,82х10^-33,5х10^7
Вольфрам5,6х10^-31,79х10^7
Железо1х10^-71х10^7
Платина1,06х10^-79,43х10^6
Литий9,28х10^-81,08х10^7

Важно! Малого сопротивления проводника из железа недостаточно для широкого применения соответствующих изделий на практике. Активное окисление провоцирует быстрое разрушение.

Таблица удельных сопротивлений проводников

В некоторых ситуациях с расходами не считаются. Военную и космическую технику создают с применением проводников из драгоценных металлов. Такие решения помогают уменьшить сечение и вес, повысить стойкость к радиационным и другим особым воздействиям.

Для изготовления серийных изделий бытового и промышленного назначения применяют более доступные по цене материалы.

Данные для расчета электрических параметров проводников с учетом изменения температуры

МатериалУдельное сопротивление (в Ом на мм кв./ м), замеренное при комнатной температуре (+0°C)Поправочный температурный коэффициент (ПК)
Медь0,01760,004
Алюминий0,02780,0045
Сталь0,130,0063
Никелин0,43-0,450,0072
Латунь0,040,002
Нихром0,980,0003
Вольфрам0,06120,00047

Применение нержавеющей стальной проволоки помогает увеличить прочность при одновременной оптимизации себестоимости. Для улучшения антикоррозийных свойств применяют специальные добавки. Они повышают сопротивление проводника из стали почти в 10 раз, по сравнению с медным аналогом.

В любом случае особое значение имеют конкретные условия в процессе использования, а также назначение изделий. Никель, например, проявляет ферромагнитные свойства при чрезвычайно низких температурах ниже порогового значения «точки Кюри» (-358 0°C). Кремний, который применяют для изготовления микросхем и транзисторов, обладает особыми параметрами полупроводника.

Сравнение проводимости меди и алюминия

Первый вывод можно сделать после изучения табличных данных. Сопротивление алюминия примерно на 80% выше, по сравнению с медью. В такой же пропорции хуже проводимость. Но для корректного анализа необходимо изучить дополнительно следующие факты:

  • алюминий легче, но для получения аналогичных электрических параметров понадобится увеличить поперечное сечение (толщину проводника);
  • медные изделия (многожильные кабели) не повреждаются неоднократным сгибанием;
  • удельное сопротивление алюминия изменяется больше при повышении/ снижении температуры;
  • пленка из окислов на его поверхности образуется быстрее, поэтому для надежности (долговечности) современную проводку делают из меди.

Удельное сопротивление меди в метрах

Применение электропроводности материалов

Наличие отмеченных свойств используют не только в инженерных энергетических сетях. Хорошая электропроводность позволяет передавать на большие расстояния информационные сигналы без искажений. Сохранение высокой амплитуды уменьшает требования к усилительным трактам, снижает общую себестоимость систем. Минимизация потерь пригодится в электролизных установках, при создании контактных групп и обмоток двигателей.

Важно! Во всех перечисленных примерах, кроме общего повышения эффективности, можно рассчитывать на предотвращение перегрева.

Расчет сопротивления

Для коррекции температурных изменений в последнем столбце второй таблицы приведены отдельные множители по каждой позиции. Расчет выполняют по формуле RT=Rn*(1+ПК*Т), где приведенные символы означают:

  • RТ – электрическое сопротивление в Омах при определенной температуре;
  • Rn – сопротивление проводника при нулевой температуре;
  • ПК – поправочный коэффициент;
  • Т – эксплуатационная температура в градусах Цельсия.

Понятие электрического сопротивления

Этим термином называют свойство создавать препятствия прохождению в цепи электрического тока. Связь между физическими величинами описывается классической формулой R=U/I (обозначения сопротивления, напряжения и силы тока, соответственно). Движение электронов совершается под воздействием электромагнитного поля, разницы потенциалов. Повышает сопротивление металлов любое искажение кристаллической структуры молекулярной решетки. Данная причина объясняет сильную зависимость параметра от чистоты материала и температуры. Так, стандарты для трубной продукции допускают применение различных сплавов. Электротехническую медь (марка М006) создают с контролируемым количеством посторонних примесей не более 0,1%.

Квалифицированное применение этого материала предваряется оценкой всех значимых факторов. Кроме себестоимости, уточняют:

  • особенности механической и других видов обработки;
  • стабильность электрических параметров в определенных условиях эксплуатации;
  • стойкость к внешним воздействиям, долговечность.

В некоторых ситуациях значительные начальные инвестиции оправданы продленным сроком службы, надежностью.

Видео